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Abstract. We present a new derivation of the Fresnel-Fizeau formula for the drag of light by a moving
medium using a simple perturbation approach. We focus particulary on the physical origin of the phe-
nomenon and we show that it is very similar to the Doppler-Fizeau effect. We prove that this effect is, in
its essential part, independent of the theory of relativity. The possibility of applications in other domains
of physics is considered.

PACS. 03.30.+p Special relativity – 32.80.-t Photon interactions with atoms – 11.80.-m Relativistic
scattering theory – 42.25.-p Wave optics

1 Introduction

It is usual to consider the famous experiment of Fizeau
(1851) [1] on the drag of light by a uniformly moving
medium as one of the crucial experiments which, just
as the Michelson-Morley experiment, cannot be correctly
understood without profound modification of Newtonian
space-time concepts (for a review of Einstein’s relativity
as well as a discussion of several experiments the reader
is invited to consult [2–4]). The result of this experiment
which was predicted by Fresnel [5], in the context of elas-
tic theory, is indeed completely justified by well known
arguments due to von Laue (1907) [6]. He deduced the
Fresnel-Fizeau result for the light velocity v in a medium,
corresponding to a relativistic first order expansion of the
Einstein velocity transformation formula:

v =
c

n0
+ ve

1 + ve

cn0

� c

n0
+ ve

(
1 − 1

n2
0

)
+O

(
v2

c2

)
. (1)

Here, n0 represents the optical index of refraction of the
dielectric medium in its proper frame, and we suppose
that the uniform medium motion with velocity ve is par-
allel to the path of the light and oriented in the same
direction of propagation. In the context of electromag-
netic theory [7,8] all derivations of this effect are finally
based on the invariance property of the wave operator
∂µ∂

µ[...] in a Lorentz transformation. It is easy to write the
wave equation [∂2

x′ −
(
n2

0/c
2
)
∂2

t′ ]ψ = 0 in the co-moving
frame R’(x′, t′) of the medium in covariant form [11]
[∂µ∂

µ +
(
n2

0 − 1
)
(vν∂ν)2]ψ = 0 which is valid in all iner-

tial frames and which for a plane waves, implies the result
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of equation (1). In this calculation we obtain the result
v = c/n0 + ve if we use the Galilean transformation which
proves the insufficiency of Newtonian dynamics.

However, the question of the physical meaning of this
phenomenon is not completely clear. This fact is in part
due to the existence of a derivation made by Lorentz
(1895) [9] based on the mixing between the macroscopic
Maxwell’s equations and a microscopic electronic oscilla-
tor model which is classical in the sense of the Newtonian
dynamics. In his derivation Lorentz did not use the rela-
tivistic transformation between the two coordinate frames:
laboratory and moving medium. Consequently, the rela-
tivistic nature of the reasoning does not appear explicitly.
Following the point of view of Einstein (1915) [10] the
Lorentz demonstration must contain an implicit hypothe-
sis of relativistic nature, however, this point has not been
studied in the literature. Recent developments in optics of
moving media [11–14] allows us to consider this question
as an important one to understand the relation between
optics, relativity and newtonian dynamics. This consti-
tutes the subject of the present paper. Here, we want to
analyze the physical origin of the Fresnel-Fizeau effect. In
particular we want to show that this phenomenon is, in
its major part, independent of relativistic dynamics.

The paper is organized as follows. In Section 2
we present the generalized Lorentz “microscopic-
macroscopic” derivation of the Fresnel formula and
the principal defect of this treatment. In Section 3 we
show how to derive the Fresnel result in a perturbation
approach based on the Lorentz oscillator model and
finally in Section 4 we justify this effect independently
from all physical assumptions concerning the electronic
structure of matter.
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2 The Lorentz electronic model
and its generalization

In this part, we are going to describe the essential contents
of the Lorentz model and of its relativistic extension. Let
ξ (x, t) be the displacement of an electron from its equi-
librium position at rest, written as an explicit function of
the atomic position x and of the time t. In the continuum
approximation we can write the equation of motion for
the oscillator as ∂2

t ξ (x, t)+ω2
0ξ (x, t) � − e

mE0e
−i(ωt−k·x)

where the supposed harmonic electric incident field ap-
pears and where the assumption of small velocity allows
us to neglect the magnetic force term. In the case of a non
relativistic uniformly moving medium we have

(∂t + ve · ∇)2 ξ+ω2
0ξ � − e

m

(
E0 +

ve

c
× B0

)
e−i(ωt−k·x)

(2)
which includes the magnetic field B = ck × E/ω of
the plane wave and the associated force due to the uni-
form motion with velocity ve. The equation of propaga-
tion of the electromagnetic wave in the moving medium
has an elementary solution when the velocity of the light
and of the medium are parallel. If we refer to a carte-
sian frame k = kêx, ve = veêx we have in this case
E = E0e

−i(ωt−kx)êy, B = c k
ωE0e

−i(ωt−kx)êz for the elec-
tromagnetic field and

ξ = − e

m

E0

(
1 − kve

ω

)
ω2

0 − (ω − kve)
2 e

−i(ωt−kx) (3)

for the displacement vector parallel to the y axis. The rel-
ativistic extension of this model can be obtained directly
putting ve = 0 in equations (2) or (3) and using a Lorentz
transformation between the moving frame and the labo-
ratory one. We deduce the displacement

ξ = − e

m
γe

E0

(
1 − kve

ω

)
ω2

0 − γ2
e (ω − kve)

2 e
−i(ωt−kx) (4)

where γe = 1/
√

(1 − v2
e/c

2). We could alternatively ob-
tain the same result considering the generalization of the
Newton dynamics i.e. by doing the substitutionsm→ mγe

and ω0 → ω0γ
−1
e in equation (2). The dispersion rela-

tion is then completely fixed by the Maxwell equation
∂2

∂x2E − 1
c2

∂2

∂t2E = 4π
c2

∂
∂tJ , where the current density J

is given by the formula J = −eN (∂t + ve∂x) ξ depending
on the local number of atoms per unit volume N supposed
to be constant. Using J and equations (3) or (4) we obtain
a dispersion relation k2 = n2 (ω)ω2/c2 where the effective
refractive index n (ω) depends on the angular frequency ω
and on the velocity ve. The more general index obtained
using equation (4) is defined by the implicit relation

n2 (ω) = 1 + γ2
e [n2

0 (ω′) − 1]
[
1 − n (ω) ve

c

]2

. (5)

Here ω′ = ω
(
1 − nve

c

)
γe, and n2

0 (ω) = 1 +
4πN0e

2/
(
ω2

0 − ω2
)
/m is the classical Lorentz index (also

called Drude index) which contains the local proper den-
sity which is defined in the frame where the medium is
immobile by N0 = Nγ−1

e . These relativistic equations im-
ply directly the correct relativistic formula for the veloc-
ity of light in the medium: Writing n2

0 − 1 = (n2 − 1)(1 −
v2

e/c
2)/(1 − nve/c)2 = (n − ve/c)2/(1 − nve/c)2 − 1 we

deduce
c

n0
=
c/n− ve

1 − ve

cn

. (6)

which can be easily transformed into

v =
c

n
=
c/n0 (ω′) + ve

1 + ve

cn0(ω′)
. (7)

It can be added that by combining these expressions we
deduce the explicit formula

n2 (ω) = 1 + γ−2
e

[n2
0 (ω′) − 1]

[1 + n0(ω′)ve

c ]2
. (8)

The non relativistic case can be obtained directly from
equation (3) or by writting γe = 1 in equations (5, 7).
This limit

v =
c

n
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+O
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)
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is the Fresnel-Fizeau formula corrected by a “frequency-
dispersion” term due to Lorentz [9]. For our purpose, it
is important to note that in the non-relativistic limit of
equation (5) we can always write the equality

c

n
=
c− ve

n′ + ve (10)

where n′ = n (1 − ve/c) / (1 − nve/c) is the index of re-
fraction defined relatively to the moving medium. We then
can see directly that the association of Maxwell’s equation
with Newtonian dynamics implies a modification of the in-
tuitive assumption “c/n0 + ve” used in the old theory of
emission. In fact, the problem can be understood in the
Newtonian mechanics using the absolute time t = t′ and
the transformation x = x′ + vet

′. In the laboratory frame
the speed of light, which in vacuum is c, becomes c/n0 in
a medium at rest. In the moving frame the speed of light
in vacuum is now c − ve [2]. However, due to invariance
of acceleration and resultant force in a Galilean trans-
formation we can interpret the presence of the magnetic
term in equation (2) as a correction to the electric field
in the moving frame. This effective electric field affect-
ing the oscillator in the moving frame is then transformed
into E (1 − nve/c). It is this term which essentially im-
plies the existence of the effective optical index n′ �= n0

and the light speed (c− ve) /n′ in the moving frame. It
can be observed that naturally Maxwell’s equations are
not invariant in a Galilean transformation. The interpre-
tation of E (1 − nve/c) as an effective electric field is in the
context of Newtonian dynamics only formal: This field is
introduced as an analogy with the case ve = 0 only in
order to show that n′ must be different from n0.
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3 Perturbation approach and optical theorem

The difficulty of the preceding model is that the Lorentz
derivation does not clarify the meaning of the Fresnel-
Fizeau phenomenon. Indeed we justify equation (1) using
a microscopical model which is in perfect agreement with
the principle of relativity. However we observe that at the
limit ve � c the use of the non relativistic dynamics of
Newton (see Eq. (2)) gives the same result. More precisely
one can see from equation (2) that the introduction of the
magnetic force −eve×B/c in addition to the electric force
is already sufficient to account for the Fresnel-Fizeau ef-
fect and this even if the classical force formula F = mẍ(t)
is conserved. Since the electromagnetic force contains the
ratio ve/c and originates from Maxwell’s equations this is
already a term of relativistic nature (Einstein used indeed
this fact to modify the dynamical laws of Newton [15]).
The derivation of Lorentz is then based on Newton as
well as on Einstein dynamics. It is well know in coun-
terpart that the Doppler-Fizeau effect, which includes the
same factor 1−ve/c, can be understood without introduc-
ing Einstein’s relativity. Indeed this effect is just a con-
sequence of the invariance of the phase associated with
a plane wave when we apply a Galilean transformation
(see [2], Chap. 11) as well as a Lorentz transformation.
We must then analyze further in detail the interaction of
a plane wave with a moving dipole in order to see if the
Fresnel phenomenon can be understood independently of
the specific Lorentz dynamics.

We consider in this part a different calculation based
on a perturbation method and inspired by a derivation
of the optical theorem by Feynman [16,17]. Consider a
thin slab of thickness L perpendicular to the x axis. Let
this slab move along the positive x direction with the con-
stant velocity veêx. Let in addition E0e

−iω(t−x/c) be the
incident electric field of a plane wave which pursues the
moving slab (see Fig. 1). Therefore, the electric field after
the slab can be formally written as

Eafter = E0e
−iω(t−δtve−x/c), (11)

where δtve appear as a retardation time produced by the
interaction of light with the slab and where all reflections
are neglected (‖Eafter‖ = ‖Ebefore‖). For a “motionless”
slab (i.e., the case considered by Feynman) we can write
the travel time of the light through the slab as ∆τ0 =
L0/c+ δt0 = n0 ·L0/c and therefore δt0 = (n0 − 1) ·L0/c
where L0 defines the proper length of the slab in the frame
where it is at rest. For the general case of a moving slab
of reduced length L = L0γ

−1
e we find for the travel time:

∆τe =
(L+ ve∆τe)

c
+ δtve = n · (L+ ve∆τe)

c
(12)

and therefore the perturbation time is

δtve =
(n− 1)L
(c− nve)

. (13)

We can obtain this result more rigorously by using
Maxwell’s boundary conditions at the two moving inter-
faces separating the matter of the slab and the air (see
Appendix A).

Fig. 1. Representation of a linearly polarized electromagnetic
plane wave travelling in a moving slab perpendicular to the
x axis. The velocity of the slab is cβe, and the three spatial
regions in front, in and after the slab are denoted by 1, 2, and 3,
respectively. We have plotted in addition a typical observation
point P(x,0,0).

In order to evaluate the diffracted field which is Eafter−
Ebefore we can limit our calculation to a first order ap-
proximation. Thereby, each dipole of the Lorentz model
as discussed above can be considered as being excited di-
rectly by the incident electromagnetic wave and where we
can neglect all phenomena implying multiple interactions
between light and matter. In this limit equation (11) re-
duces to

Eafter = E0e
−iω(t−x/c)e+iω(n−1) L

c−nve

� E0e
−iω(t−x/c)

(
1 + iω (n− 1)

L

c− nve

)
. (14)

If the distance between the slab and an observation point
is much larger than L we can consider the slab as a 2D con-
tinuous distribution of radiating point dipoles. The vector
potential Arad radiated by a relativistically moving point
charge e is in according with the Lienard-Wiechert’s for-
mula given by [2]:

Arad (x, t) = e
v/c(

1 − R̂ · β
)
R
|ret. (15)

Here R = ‖x − x0 (t) ‖ is the distance separating the ob-
servation point x (denoted by P) and the point charge po-
sition located at x0 (t) at the time t; additionally v (t) =
ẋ0 (t) is the velocity of the point charge and R̂ (t) is the
unit vector (x − x0 (t)) /R (t). In this formula, in agree-
ment with causality, all point charge variables are evalu-
ated at the retarded time tret = t−R (tret) /c.

In the present case the motion of the point charge can
be decomposed into a uniform longitudinal component vet
oriented along the positive x direction and into a transver-
sal oscillating part ξ (t) = ξ0e

−iω(1− ve
c )t obeying the con-

dition ‖ξ̇ (t) ‖/c� 1. Owing to this condition we can iden-
tify

(
1 − R̂ · v/c

)
with

(
1 − R̂ · ve/c

)
. Consequently, in

the far-field the contribution of the electron uniform ve-
locity is cancelled by the similar but opposite contribution
associated with the nucleus of the atomic dipole: Only the
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vibrating contribution of the electron survives at a long
distance from the diffraction source. If we add the contri-
bution of each dipole of the slab acting on the observation
point P at the time t we obtain then the total diffracted
vector potential Adiff produced by the moving medium:

Adiff (x, t) � −2πγeN0Liω
e

c
(1 − βe) ξ0∫ +∞

0

ρdρ
e−iω(1−βe)(t−R(tret)/c)(

1 − R̂ (tret) · ve/c
)
R (tret)

. (16)

Here ρ is the radial coordinate in a cylindrical coordinate
system using the direction x as a revolution axis, and the
quantity γeN0L2πρdρ is the number of dipoles contained
in the cylindrical volume of length L and of radius varying
between ρ and ρ + dρ if we consider a local dipole den-
sity given by γeN0. In this formula the retarded distance
R (tret) is a function of ρ and we have (see the textbook
of Jackson [2])

R (tret) = γ−1
e

(
1 − R̂ (tret) · ve/c

)−1

×
√
ρ2 + γ2

e (x− vet)
2. (17)

This expression shows that the minimum Rmin is obtained
for a point charge on the x axis, and that:

Rmin = (x− vet) / (1 − βe) . (18)

In order to evaluate the integral in equation (16) we must
use in addition the following relation (see Appendix C):

R (tret) = γ2
eβe (x− vet) + γe

√
ρ2 + γ2

e (x− vet)
2
. (19)

Hence, we obtain the following integral:

Adiff (x, t) � −2πiωγ2
eN0L

e

c
(1 − βe) ξ0

× e−iω(1−βe)(t−γ2
eβe(x−vet))

×
∫ +∞

0

ρdρ
ei ω

c (1−βe)γe

√
ρ2+γ2

e (x−vet)2}√
ρ2 + γ2

e (x− vet)
2

,

(20)

where we have used the relations equation (17), equa-
tion (19) in the denominator and in the exponential argu-
ment of the right hand side of equation (16), respectively.
The diffracted field is therefore directly calculable by us-

ing the variable u =
√
ρ2 + γ2

e (x− vet)
2. We obtain the

result

Adiff � 2πγeLN0
e

c
ξ0e

−iω(t−x/c). (21)

The total diffracted electric field Ediff is obtained using
Maxwell’s formula E = − (1/c)∂tA, which gives:

Ediff � 2πiγeLN0ω
e

c
ξ0e

−iω(t−x/c). (22)

The final result is given substituting equation (4) in equa-
tion (22) and implies by comparison with equation (14)

n � 1 + 2πN0γ
2
e

e2

m

(
1 − ve

c

)2

ω2
0 − γ2

eω
2
(
1 − ve

c

)2 . (23)

This equation constitutes the explicit limit N0 → 0 of
equation (5) and implies the correct velocity formula equa-
tion (7) when we neglect terms of O[N2

0 ]. It can again be
observed that the present calculation can be reproduced
in the non relativistic case by neglecting all terms of order
(ve/c)2.

4 Physical meaning and discussion

The central fact in this reasoning is “the travel condition”
given by equations (12, 13). Indeed, of the same order in
power of N0 we can deduce the relation

δtve = γeδt0 (1 − ve/c) (24)

and consequently the condition equation (12) reads

∆τe =
L+ ve (∆τe − δt0γe)

c
+ δt0γe = n · (L+ ve∆τe)

c
.

(25)
If we call δt0 the time during which the energy contained
in a plane of light moving in the positive x direction is
absorbed by the slab at rest in the laboratory, δt0γe is ev-
idently the enlarged time for the moving case. During the
period where this plane of light is absorbed by the slab its
energy moves at the velocity ve. This fact can be directly
deduced of the energy and momentum conservation laws.
Indeed, let Mγeve be the momentum of the slab of mass
M before the collision and ε the energy of the plane of
light, then during the interaction the slab is in a excited
state and its energy is now E∗ = ε + Mγec

2 and its mo-
mentum P ∗ = ε/c + Mγeve. The velocity of the excited
slab is defined by w = c2P ∗/E∗ and we can see that in the
approximation M → ∞ used here w � ve (we neglect the
recoil of the slab). During δt0γe the slab moves along a
path length equal to veδt0γe and thus the travel condition
of the plane of energy in the moving slab can be written

c (∆τe − γeδt0) = L+ ve (∆τe − γeδt0) , (26)

which is an other form for equation (25). Now eliminating
directly ∆τe in equation (26) give us the velocity v of the
wave:

v = ve +
c− ve

1 + cδt0
L (1 − βe) γe

, (27)

i.e.
v = ve +

c− ve

1 + (n0 − 1) (1 − βe) γ2
e

, (28)

which depends on the optical index n0 = 1+cδt0/L0. After
straightforward manipulations this formula becomes

v =
c/n0 + ve

1 + ve

cn0

(29)
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which is the Einstein formula containing the Fresnel result
as the limit behavior for small ve.

It can be observed that this reasoning is even more
natural if we think in term of particles. A photon mov-
ing along the axis x and pursuing an atom moving at the
velocity ve constitutes a good analogy to understand the
Fresnel phenomenon. This analogy is evidently not lim-
ited to the special case of the plane wave eiω(t−x/c). If for
example we consider a small wave packet which before the
interaction with the slab has the form

Ebefore (x, t) =
∫

∆ω

dωaωe
i(kx−ωt), (30)

where ∆ω is a small interval centered on ωm, then after
the interaction we must have:

Eafter (x, t) =
∫

∆ω

dωaωe
i(kx−ω[t−δt(ω)), (31)

where δt (ω) is given by equation (13). After some manip-
ulation we can write these two wave packets in the usual
approximative form:

Ebefore � ei(kmx−ωmt)

∫
∆ω

dωaωe
−i(ω−ωm)[t−∂k/∂ωmx]

= ei(kmx−ωmt)F (t− x/vg)

Eafter � ei(kmx−ωm[t−δt(ωm)])F (t− x/vg − δtg) . (32)

Here, vg = ∂ωm/∂km = c is the group velocity of the pulse
in vacuum and δtg = ∂ (ωmδt (ωm)) /∂ωm is the perturba-
tion time associated with this group motion. This equation
for F possesses the same form as equation (11) and then
the same analogy which implies equation (25) is possible.
This can be seen from the fact that we have

δt (ω) = γeδt0(ω′) (1 − ve/c) (33)

with ω′ = γeω(1 − ve/c). We deduce indeed

δtg = γeδt0g(ω′
m) (1 − ve/c) , (34)

where we have δt0g(ω′
m) = ∂ (ωmδt0 (ω′

m)) /∂ωm

i.e. δt0g(ω′
m) = ∂ (ω′

mδt0 (ω′
m)) /∂ω′

m. Since equation (33)
and equation (34) have the same form the Fresnel law
must be true for the group velocity.

It is important to remark that all this reasoning con-
serves its validity if we put γe = 1 and if we think only in
the context of Newtonian dynamics. Since the reasoning
with the travel time does not explicitly use the structure
of the medium involved (and no more the magnetic force
−eve × B/c) it must be very general and applicable in
other topics of physics concerning for example elasticity
or sound.

Consider as an illustration the case of a cylindrical
wave guide with revolution axis x and of constant length L
pursued by a wave packet of sound. We suppose that the
scalar wave ψ obeys the equation [c2∂2/∂r2−∂2/∂t2]ψ = 0
where c is the constant sound velocity. The propagative

modes in the cylinder considered at rest in the laboratory
are characterized by the classical dispersion relation

ω2/c2 = γ2
n,m + k2

x (35)

where the cut off wave vector γn,m depend only of the
two “quantum” numbers n,m and of the cross section
area A of the guide (γ2 ∼ 1/A). The group velocity
∂ω/∂kx of the wave in the guide is defined by vg =(
c2/ω

)√
ω2/c2 − γ2 � c[1 − 1

2c
2γ2/ω2] and the travel

time ∆τ by L/vg � L[1 + 1
2c

2γ2/ω2]/c which implies
δt0 = 1

2Lcγ
2/ω2. In the moving case where the cylinder

possesses the velocity ve we can directly obtain the con-
dition given by equation (25) (with γe = 1) and then we
can deduce the group velocity of the sound in the guide
with the formula

v = ve +
c− ve

1 + cδt0
L (1 − βe)

. (36)

This last equation give us the Fresnel result if we put
the effective sound index n0 = 1 + cδt0/L. We can con-
trol the self consistency of this calculation by observing
that the dispersion relation equation (35) allows the defi-
nition of a phase index nphase = ck/ω � 1− c2γ2

n,m/(2ω2)
which is equivalent to equation (25) when ω0 = 0 and
2πN0e

2/m = c2γ2
n,m/2. This reveals a perfect analogy be-

tween the sound wave propagating in a moving cylinder
and the light wave propagating in a moving slab. It is then
not surprising that the Fresnel result is correct in the two
cases.

The principal limitation of our deduction is contained
in the assumption expressed above for the slab example:
‖Eafter‖ � ‖Ebefore‖ i.e. the condition of no reflection sup-
posing the perturbation on the motion of the wave to be
small. Nevertheless, the principal origin of the Fresnel ef-
fect is justified in our scheme without the use of the Ein-
stein relativity principle.

We can naturally ask if the simple analogy proposed
can not be extended to a dense medium i.e. without the
approximation of a weak densityN0 or of a low reflectivity.
In order to see that it is indeed true we return to the
electromagnetic theory and we suppose an infinite moving
medium like the one considered in the second section. In
the rest frame of the medium we can define a slab of length
L0. The unique difference with the Section 3 is that now
this slab is not bounded by two interfaces separating the
atoms from the vacuum but is surrounded by a continuous
medium having the same properties and moving at the
same velocity ve. In the laboratory frame the length of
the moving slab is L = L0γ

−1
e . We can write the time

∆τe taken by a signal like a wave packet, a wave front or
a plane of constant phase to travel through the moving
slab:

c∆τe = n · (L+ ve∆τe) . (37)

The optical index n can be the one defined in Section 2 for
the case of the Drude model but the result is very general.
We can now introduce a time δt0 such that equation (25),
and consequently equation (27), are true by definition. We
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conclude that this last equation equation (27) is equivalent
to the relativistic equation (29) if, and only if, we define
the time δt0 by the formula

δt0 = (n0 − 1) · L0/c. (38)

In other terms we can always use the analogy with a
photon pursuing an atom since the general formula equa-
tion (29) is true whatever the microscopic and electrody-
namics model considered. In this model – based on a re-
tardation effect – the absorbtion time δt0 is always given
by equation (38).

This opens new perspectives when we consider the
problem of a sound wave propagating in an effective mov-
ing medium. Indeed there are several situations where we
can develop a deep analogy between the propagation of
sound and the propagation of light. This implies that the
conclusions obtained for the Fresnel effect for light must
to a large part be valid for sound as well. This is in par-
ticular true if we consider an effective meta material like
the one that is going to be described now:

We consider a system of mirrors as represented in Fig-
ure 2A, at rest in the laboratory. A beam of light propa-
gates along the zigzag trajectory A0, B0, A1, ..., An, Bn, ....
The length AnBn is given by

√
(L2

0 +D2) where the dis-
tance L0 and D are represented on the figure. The time
∆τ0 spent by a particle of light to move along AnBn is
then

√
(L2

0 +D2)/c. We can equivalently define an effec-
tive optical index n0 such that we have

(L2
0 +D2)
c2

= ∆τ2
0 =

L2
0n

2
0

c2
. (39)

This implies

n2
0 = 1 +

D2
0

L2
0

. (40)

We consider now the same problem for a system of mir-
rors moving with the velocity ve. In order to be con-
sistent with relativity we introduce the reduced length
L = L0γ

−1
e . The beam propagating along the path

A0, B0, A1, ..., An, Bn, ... must pursue the set of mirrors.
We then define the travel time ∆τe along an elementary
path AnBn by

((L + ve∆τe)2 +D2)
c2

= ∆τ2
e =

((L+ ve∆τe)2n2

c2
, (41)

where n is the effective optical index for the moving
medium. From this equation we deduce first ∆τe =
(L/c)n/(1 − ven/c) and then

n2 − 1 = (n2
0 − 1)

(1 − ven
c )2

(1 − (ve

c )2)
(42)

which finally give us the formula

c

n
=
c/n0 + ve

1 + ve

cn0

. (43)

We can again justify the Fresnel formula at the limit
ve/c � 1. The simplicity of this model is such that it

Fig. 2. An ideal meta material equivalent to a medium with an
effective index. A wave represented by an arrow propagates be-
tween the mirrors A0, B0, A1, ..., An, Bn, .... A) when the mir-
rors are at rest in the laboratory the travel time δτ0 = AnBn/c
is dependent only on the distances L0 and D. B) When the
mirrors move at the velocity ve relatively to the laboratory
the travel time δτe = AnBn/c is affected by the motion and
depends on ve as well as on D and L = L0/γe.

does not depend on the physical properties of atoms, elec-
trons and photons but only on geometrical parameters.
Clearly we can make the same reasoning for a sound wave
by putting γe = 1. This still gives us the Fresnel formula
when we neglect terms equal or smaller than O

(
v2

e/c
2
)
.

In addition this model allows us to conclude that the es-
sential element justifying the Fresnel-Fizeau result is the
emergence of a delay time – a retardation effect– when we
consider the propagation of the signal at a microscopic or
internal level. The index n which characterizes the macro-
scopic or external approach is then just a way to define an
effective velocity without looking for a causal explanation
of the retardation.

The essential message of our analysis is that by tak-
ing explicitly into account the physical origin of the delay
we can justify the essence of the Fresnel-Fizeau effect in
a non relativistic way. The Fresnel-Fizeau effect is then a
very general phenomenon. It is a consequence of the con-
servation of energy and momentum and of the constant
value of the wave velocity in vacuum or in the considered
medium. The so called travel condition (Eq. (26)) which
is a combination of these two points can be compared to
the usual demonstration for the Doppler effect. In these
two cases of light pulses pursuing a moving particle the
perturbation time δtve � δt0 (1 − ve/c) is a manifestation
of the Doppler phenomenon. It should be emphasized that
the analogy between sound and electromagnetic waves dis-
cussed in this article could be compared to the similarities
between sound wave and gravitational waves discussed in
particular by Unruh. On this subject and some connected
discussions concerning the acoustic Aharonov-Bohm ef-
fect (that is related to the optical Aharonov-Bohm effect
that follows from the Fizeau effect) the reader should con-
sult [18,19].
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5 Summary

We have obtain the Fresnel-Fizeau formula using a per-
turbation method based on the optical theorem and in a
more general way by considering the physical origin of the
refractive index. The modification of the speed of light in
the medium appears then as a result of a retardation effect
due to the duration of the interaction or absorbtion of light
by the medium, and the Fresnel-Fizeau effect, as a direct
consequence of the medium’s flight in front of the light.
These facts rely on the same origin as the Doppler-Fizeau
effect. We finally have shown that it is not correct to as-
sume, as frequently done in the past, that a coherent and
“Newtonian interpretation” of these phenomena would be
impossible. On the contrary, the results do not invalidate
the derivation of the Fresnel-Fizeau effect based on the
principle of relativity but clarify it. We observe indeed
than all reasoning is in perfect agreement with the prin-
ciple of relativity. We must emphasize that even if the
Fizeau/Fresnel effect is conceptually divorced from rela-
tivity it strongly motivated Einstein’s work (more even
than the Michelson and Morley result). The fact that the
Fizeau as well as the Michelson-Morley experiment can be
justified so easily with special relativity clearly show the
advantages of Einstein’s principle to obtain quickly the
correct results. Nevertheless, if we look from a dynamical
point of view, as it is the case here, this principle plays a
role only for effects of order v2

e/c
2 which however are not

necessary to justify the Fresnel formula.

The author acknowledges S. Huant, M. Arndt, J. Krenn,
D. Jankowska as well as the two anonymous referees for in-
teresting and fruitful discussions during the redaction process.

Appendix A

Maxwell’s equations impose the continuity of the electric
field on each interface of the slab. More precisely these
boundary relations impose: Emedium A|S = Emedium B|S
where S is one of the two moving interfaces separating
vacuum and matter. Hence we obtain an equality con-
dition between the two phases φmedium A and φmedium B

valid for all times at the interface. Let Φ1 = −iω (t− x/c)
be the phase of the plane wave before the slab. In a sim-
ilar way let Φ2 = −iω2 (t− nω2,βex/c− δ2) and Φ3 =
−iω3 (t− x/c− δ3) be the phases in the slab and in vac-
uum after traversing the slab, respectively. In these ex-
pressions there appear two retardation constants, δ2,3 and
the optical index of the slab. On the first interface denoted
by (I-II) we have x = cβet and consequently

ω (1 − βe) t = ω2 (1 − n (ω, βe)βe)

×
(
t− δ2

1 − n (ω2, βe)βe

)
, (A.1)

which is valid for each time and possesses the unique so-
lution:

ω2 = ω
1 − βe

1 − n (ω, βe)βe
, δ2 = 0. (A.2)

Fig. 3. In this figure Q is the position of the particle at the
retarded time tret and P is the observation point at the time
t. The particle moves uniformly on the the x line QR following
the trajectory vet and Q’ is the position of the particle at the
time t separated of P by the distance r. In addition, if we call
R the projection of P on QR, then x and ρ are the coordinates
of the observation point in the plane of the figure.

Considering the second interface (II-III) in a similar way
we obtain the following conditions

ω3 = ω2
1 − n (ω, βe)βe

1 − βe
= ω

δ3 = L
n (ω, βe) − 1

c− n (ω, βe) cβe
(A.3)

where the 2nd equality is equation (13).

Appendix B

Using geometrical considerations (see Fig. 3) we can de-
duce the relation

R (tret)
2 = ρ2 + (βeRret + x− vet)

2
, (B.1)

which is equivalent after manipulations to the other:

ρ2 + γ2
e (x− vet)

2 =
(
1 − β2

e

) (
Rret − βeγ

2
e (x− vet)

)2
.

(B.2)
We can in a second step rewrite this equality as follows:

Rret = γ2
eβe (x− vet) + γe

√
ρ2 + γ2

e (x− vet)
2 (B.3)

which is equation (19).
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